Ferromagnetism in stacked bilayers of Pd/C60

نویسندگان

  • S. Ghosh
  • S. Tongay
  • A. F. Hebard
  • H. Sahin
  • F. M. Peeters
چکیده

We provide experimental evidence for the existence of ferromagnetism in bilayers of Pd/C60 which is supported by theoretical calculations based on density functional theory (DFT). The observed ferromagnetism is surprising as C60 and Pd films are both non-ferromagnetic in the non-interacting limit. Magnetization (M) versus applied field (H) data acquired at different temperatures (T) show magnetic hysteresis with typical coercive fields (Hc) on the order of 50 Oe. From the temperature-dependent magnetization M(T) we extract a Curie temperature (TCZ550 K) using Bloch-like power law extrapolations to high temperatures. Using DFT calculations we investigated all plausible scenarios for the interaction between the C60 molecules and the Pd slabs, Pd single atoms and Pd clusters. DFT shows that while the C60 molecules are nonmagnetic, Pd films have a degenerate ground state that, subject to a weak perturbation, can become ferromagnetic. Calculations also show that the interaction of C60 molecules with excess Pd atoms and with sharp edges of a Pd slab is the most likely configuration that render the system ferromagnetic. Interestingly, the calculated charge transfer (0.016 e per surface Pd atom, 0.064 e per Pd for intimate contact region) between C60 and Pd does not appear to play an important role. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic structure and bulk spin-valve behavior in Ca3Ru2O7.

Density functional calculations of the fermiology and magnetic properties of Ca3Ru2O7 reveal an unusual state: a bulk spin valve. The ground state consists of nearly half-metallic bilayers stacked antiferromagnetically with a weak coupling. Out of plane transport is very strongly suppressed by the antiferromagnetic alignment, which can be destroyed in favor of ferromagnetism at low energy cost....

متن کامل

2 00 9 Defect - induced ferromagnetism in fullerenes

Based on the ab initio electronic structure calculations the picture of ferromagnetism in polimerized C60 is proposed which seems to explain the whole set of controversial experimental data. We have demonstrated that, in contrast with cubic fullerene, in rhombohedral C60 the segregation of iron atoms is energetically unfavorable which is a strong argument in favor of intrinsic character of carb...

متن کامل

-

X-ray diffraction measurements were performed on Co?Pt1-?/Pd, Co/Pd, Co/Fe, and Co/W multilayer samples with different structures, such as Co?Pt1-? alloy layer composition ?, bilayer thickness, and number of bilayers. Multilayer samples were made by magnetron sputtering in a chamber with multi-parallel guns and a position controllable substrate. Co?Pt1-? alloy layers were deposited by cosputter...

متن کامل

Ferromagnetism at the edges of the stacked graphitic fragments: an ab initio study

We carry out first-principles density functional calculations to investigate electronic and magnetic structures of the stacked graphitic fragments. Ferromagnetically ordered ground states are found to be stable in the zigzag edges of an isolated graphene, regardless of whether or not the edges are passivated with hydrogen atoms. However, the localized moments in the hydrogen-terminated edge van...

متن کامل

Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015